S^3+3s^2+7s+5=S^2+4s+3

Simple and best practice solution for S^3+3s^2+7s+5=S^2+4s+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for S^3+3s^2+7s+5=S^2+4s+3 equation:



^3+3S^2+7S+5=^2+4S+3
We move all terms to the left:
^3+3S^2+7S+5-(^2+4S+3)=0
We add all the numbers together, and all the variables
3S^2+7S-(^2+4S+3)=0
We get rid of parentheses
3S^2+7S-4S-3-^2=0
We add all the numbers together, and all the variables
3S^2+3S=0
a = 3; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·3·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*3}=\frac{-6}{6} =-1 $
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*3}=\frac{0}{6} =0 $

See similar equations:

| 4(4x-2)=37 | | 5+k=20 | | 53=8+(12/x) | | x^2=+x | | -1x+(x+1)^2=-1 | | (x+1)^2=(x-1) | | t2-8t+7=0 | | y+-2=35 | | 0.558y=25-y | | 3x^2+2x=-1/3 | | x^2+60x-7,200=0 | | (9y+6)/7=((y+8)/6))+4 | | 3969=(2w+5)*w | | 0,2+0,8x=x^2 | | 1-8x=-7x^2 | | 11+3(7-6x)=26-16x | | 5(5.6)-4y=28 | | 6x+7=-5+3x+21 | | 3+2(5x-6)=6-4(2x+1) | | 4y+9=3y-4= | | 50=-2(21-b)+4(b-4) | | 4x-7x+50=2x+25 | | 6z-20=z+5 | | 1/2y+3=2/3y-4 | | 1/4(3x-5)=10-3/4(-1) | | 30x^2-40x=0 | | x3-x2-12x+32=0 | | (v-7)^2=2v^2-21v+59 | | 14^x+5=13^2x | | 9r=2)(r=13)=0 | | 5(x-2.3)=19.5 | | x+3(x)=640 |

Equations solver categories